Power to X Pilot Plant

While it is clear we need to reduce fossil fuel CO2 emissions, it is also clear that we need high energy density fuels such as Diesel and Kerosene to maintain long-haul road and air transport infrastructures. PtoX removes fossil fuel from the supply chain and provides a circular economy in which emitted CO2 is recycled and reused. The power to X pilot plant is the first example of a cradle to grave approach to liquid fuels at an educational institution that is specific to the undergraduate curriculum. This puts Sheffield at the forefront of research led teaching. We produce Diesel from emitted CO2 and water and test the efficiency of the product in Diesel (and jet) test engines in order to give students a real-world experience of an important future technology.

Students will take CO2 either from bottles or directly from the urban air outside the Diamond and water from the mains supply. Solid oxide co-electrolysis of the two feeds will give syngas and the composition optimised by varying the conditions. Syncrude will then be produced in the Fischer-Tropsch reactor, which is then separated by distillation to give different grades of Diesel fuel.

At all stages, students can measure intermediate and product compositions on the line, and use the information to optimise the product and process. The different grades of Diesel produced by different student teams is tested on dedicated Diesel engine beds to discover the optimum performance-composition characteristics.
The power to X pilot plant gives students an opportunity to learn hands on core skills in mass and energy balances, reaction engineering and separation process applied to cutting edge technology, solving a problem of great global significance.