Explore this course:

    Applications for 2024 entry are now open. Apply now or register your interest to hear about postgraduate study and events at the University of Sheffield.

    MSc
    2024 start September 

    Drug Discovery Science

    Department of Chemistry, Faculty of Science

    Find out how scientists discover chemical candidates for new pharmaceuticals. You'll learn how to meet the pharmaceutical industry’s increasing demands for drugs that can treat illnesses safely and more effectively, overcome antibiotic resistance, and be produced at a lower financial and environmental cost.
    Students in a lab

    Course description

    This course covers the drug discovery and design techniques used in the pharmaceutical industry. You’ll study topics such as pharmacology, toxicology and genomics as you learn how target molecules to treat specific diseases are identified, characterised and optimised for potential clinical trials.

    Your training will cover the fundamental chemistry and biology of protein interactions, their role in disease and how drugs affect the human body. You’ll learn about computer-aided drug design techniques that are used to predict how well a potential drug might work and screening technologies that are used to test a drug’s effect on its molecular targets.

    The course is taught by world-leading scientists from across chemistry, biology, engineering and medicine and gives you access to state-of-the-art screening and analysis facilities.

    Modules

    A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.

    Core modules:

    Laboratory Practice and Statistics

    The module covers techniques and analytical methods commonly used by most researchers in human molecular biology. Students learn the importance of experimental design and application of statistical methods for power and significance calculations for different types of experiment. In group work, students design a poster to present a set of data. In practical laboratory classes, students are shown how to perform a series of techniques that are frequently used in molecular biology, analyse their data statistically and present results in a formal laboratory notebook.

    15 credits
    Research, Presentation and Professional Skills

    This module  aims to prepare students to become professional scientific researchers ready to conduct a research project.  Students will be taught how to retrieve and critically assess the existing literature on a particular research topic and to communicate this as a scientific review. They will learn about the attributes of an ethical researcher, scientific method and how to undertake research safely and responsibly and how to manage data. In addition, students will acquire professional skills relevant to their future employability and learn how to present scientific information. Students will undertake a training needs analysis supported by an experienced researcher so that they can take charge of their own development. This will allow them to tailor their subsequent training to the project they are about to undertake and to their wider individual professional and researcher development. On completion of the module students will have produced a portfolio of work that will form the  foundations of their training as a professional researcher.

    30 credits
    Drug Design, Pharmacology & Medicinal Chemistry

    This module will provide an in-depth discussion of relevant disease mechanisms and strategies that can be used to optimise the pharmacodynamic, pharmacokinetic properties of drugs; and how drugs/analogues can be designed using computer-aided drug design (CADD) software.

    30 credits
    Drug Discovery Research Project

    For this module, students complete an extended and independent research project working as a member of a team to solve a problem at the cutting edge of drug discovery. They receive specialist training to help them develop the advanced practical skills they need for their project, and have access to state-of-the-art equipment and facilities. They also put their previous research training and transferable skills into practice through literature searches, communicating their work and presenting their findings

    60 credits

    Optional modules - two or three from:

    The Biotech and Pharmaceutical Industry

    This practical module will teach students how to perform small molecule and functional genetic screens, focused on human disease. Emphasis will be placed on how to select the right off-the-shelf assay and if one is not available how to build a new assay specific for their study. Students will take part in experimental screens of small molecules and genetic knock-down screens. Examples of screening methods that will be covered include traditional small molecule screens, modern functional genomics and high throughput phenotypic screens. The emphasis will be to appreciate every step that is involved in this process, from laboratory automation to analysis. Finally, the students will collect and handle data from their screens and visualize the results using modern methods.

    15 credits
    Neurodevelopment and Behaviour

    This course examines the mechanisms that underlie development of the nervous system during embryogenesis. Examples will be described from a variety of model organisms to introduce key steps in the establishment of the CNS and PNS, steps that include neural induction, neural patterning, early segregation of CNS and PNS, the establishment and refinement of connectivity in the nervous system. Recent research from teachers of this course, and from both the classical and current literature is used to analyse and evaluate theories and mechanisms of establishment of the functional nervous system.

    15 credits
    AMR and Current Clinical Practice

    In this module we will examine current clinical practice in relation to antimicrobial resistant infection, both in the UK and globally. We will discuss why it is a problem now and the implications for the future. We will describe how resistance arises and compare and contrast different antimicrobial resistant infections. We will study the different aspects of clinical practice, examining case studies and the successful reduction in MRSA cases in the UK. Finally, we will discuss and debate the ethics of antimicrobial stewardship and treatment, and the impact this has clinical practice.

    30 credits
    Genomic Approaches to Drug Discovery

    The unit will be a practical, laboratory based course in which students will learn to culture human embryonic stem (hES) cells and their malignant equivalent, embryonal carcinoma cells. The course will be an intensive two week programme in which students will maintain cultures of hES cells, and carry out experiments to determine the expression of marker antigens and genes used to identify the stem cells and monitor their differentiation. They will learn and apply techniques for genetic manipulation of hES cells, and methods for inducing their differentiation. The practical work will be supplemented by lectures directly linked to specific practical sessions.The module will teach students the basis of small molecule and functional genetic screens, focusing on human disease. Students will learn about the theory and practice of automated small molecule and genetic screens. Examples of screening methods that will be covered include traditional small molecule screens, modern functional genomics and high throughput phenotypic screens. The emphasis will be to appreciate every step that is involved in this process, from automation to analysis. The student will learn how the biotech, academic and pharmaceutical industry use these techniques to identify new candidates for potential therapies. The emphasis throughout will be to appreciate how experimental research can be used to identify candidate target genes for drug discovery and small molecules, reflecting the University´s mission

    15 credits
    Cancer Biology

    The unit will provide a description of the nature of genomic complexity as revealed using next generation sequencing technology. It will explore cancer genotypes and phenotypes in the context of 8 essential characteristics that are common to all cancers, and which collectively dictate malignant growth. These characteristics are : self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, tissue invasion/metastasis, avoidance of immune destruction, and de-regulated cellular energetics. It will discuss how genome instability arises, and together with tumour-promoting inflammation, how these enable the emergence of all other cancer characteristics. It will utilize this conceptual framework to discuss recent and future developments in cancer therapeutics. A brief review of fundamental principles in genetics and molecular cell biology will be given. Nevertheless, students should have a basic understanding of genetics, molecular biology and cell biology.

    15 credits
    Medicinal Chemistry and Drug Synthesis

    This module will provide an overview of how medicinal chemistry emerged, how biological mechanisms of disease are identified, how chemistry is used to target these mechanisms, and how drugs are synthesised.

    15 credits
    Modelling Protein Interactions

    It is frequently necessary to explore how protein products of a gene interacts with other molecules to understand the phenotype produced by a genetic change or phenocopied by drug treatment. In this module, students will acquire the skills to investigate the molecular interactions of protein molecules through advanced molecular graphics and docking software. Topics will include the principles of molecular structure, 3D visualisation, sequence and structure alignments, structure prediction, prediction of function, the analysis of molecular interactions (including protein-protein, protein-nucleic acid and protein-small molecule interactions), predicting the effect of mutation and computer assisted drug design.

    15 credits
    Gene Networks: Models and Functions

    The module will introduce students to the concepts of interacting molecular networks in biology and how network behaviour of genes may be influenced by external factors and polymorphisms. The main topics will be: Origin of sequence variations, evolution of genes and functions, high-throughput experimental measurement of gene activity, interpretation of large data sets, mathematical modelling of gene functions, in vitro models, animal models, molecular libraries, and translation of resulting discoveries into clinical research.The module will be assessed by coursework based on problem-solving questions requiring independent thinking.

    15 credits
    Chemical Biology

    The ability to synthesise biomolecules has led to many of  the most significant developments in molecular and chemical biology and to the development of biopharmaceuticals. This module looks at how biomolecules are created, from both biological and chemical perspectives. Student's knowledge will build up from understanding the central dogma and basic chemistry of life, to exploring important chemical biology techniques such as DNA sequencing, polymerase chain reaction, protein overproduction and site directed mutagenesis. Topics also include the production of novel biomolecules for bioconjugation, rational design, directed evolution, antibody production, and the new discoveries that synthetic biology might open the door to.

    15 credits

    The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

    Open days

    An open day gives you the best opportunity to hear first-hand from our current students and staff about our courses.

    Find out what makes us special at our next online open day on Wednesday 17 April 2024.

    You may also be able to pre-book a department visit as part of a campus tour.Open days and campus tours

    Duration

    1 year full-time

    Teaching

    You’ll be taught by our academics and research experts in a multi-disciplinary approach, to boost your expertise in a range of settings; through lectures, group workshops, laboratory practicals and by individual research projects.

    Around 12 weeks of your masters will typically be spent working either on an individual or cohort research project supervised by experts in the field to tackle a specific drug discovery problem. Here you’ll gain first-hand experience as a researcher, and will have access to the outstanding research facilities in Sheffield.

    Our assessment methods are designed to support the achievement of learning outcomes and develop your professional skills, giving you confidence and experience in a range of activities . This includes coursework, examinations, a literature review, dissertation and viva. Regular feedback is also provided, so you can understand your own development throughout the course.

    Assessment

    Our assessment methods are designed to support the achievement of learning outcomes and develop your professional skills, giving you confidence and experience in a range of activities. This includes coursework, examinations, a literature review, dissertation and viva.

    Regular feedback is also provided, so you can understand your own development throughout the course.

    Your career

    This course is designed to train you for roles working on drug discovery in the pharmaceutical industry. University of Sheffield graduates have been hired by major pharmaceutical companies such as GSK, Pfizer and AstraZeneca.

    The course is also excellent training for a PhD in medicinal science. Sheffield chemistry graduates have secured postgraduate research positions at many of the world's top 100 universities.

    Facilities

    You'll have access to expertise and equipment in the state-of-art research facilities and centres, including:

    Collaborators

    You'll benefit directly from the expertise of our partners in the drug discovery industry. Computer-aided drug design training is provided by LifeArc, a drug discovery company and charity organisation. Schrodinger, a computer-aided drug design software company, provides introductory teaching and software licenses for our students.

    Department

    Department of Chemistry

    The Soft Matter Analytical Laboratory

    The Department of Chemistry was one of the University's first departments when it was founded in 1905. Since then, four Nobel Prize winners have been Sheffield chemistry researchers or students. Several of our academics have been named Fellows of the Royal Society or been awarded prizes from other prestigious organisations such as the Royal Society of Chemistry.

    Our chemistry researchers work on many of society’s most pressing challenges, from antimicrobial resistance to environmental sustainability, and they collaborate closely with industry to find solutions and develop innovative new technologies.

    Many of our academics bring first-hand industrial and business experience to their teaching, with many involved in current spin-out companies and collaboration with industrial partners.

    In the Research Excellence Framework 2021, 95 per cent of our research was rated in the highest two categories as world-leading or internationally excellent.

    We’re home to state-of-the-art chemistry laboratories and several multi-million pound materials science facilities.

    These include the Lord Porter Ultrafast Laser Spectroscopy Laboratory, which is used in studies ranging from energy transport in molecules and materials to artificial photosynthesis, the Soft Matter Analytical Laboratory, where scientists can study samples that are 100 times smaller than a human hair, and an array of state-of-the-art instrumentation in Sheffield Surface Analysis Centre.

    Entry requirements

    Minimum 2:1 undergraduate honours degree in chemistry, biology, pharmacy or a related subject.

    We may also consider your application if you don't meet the standard academic requirements but you have considerable relevant professional experience.

    We also accept medical students who wish to intercalate their studies.

    We also consider a wide range of international qualifications:

    Entry requirements for international students

    Overall IELTS score of 6.5 with a minimum of 6.0 in each component, or equivalent.

    Pathway programme for international students

    If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for a pre-masters programme in Science and Engineering at the University of Sheffield International College. This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of Sheffield.

    Intercalation

    We accept medical students who wish to intercalate their studies. Find out more on the School of Medicine and Population Health website.

    If you have any questions about entry requirements, please contact the department.

    Apply

    You can apply now using our Postgraduate Online Application Form. It's a quick and easy process.

    Apply now

    Contact

    chem-pgadmissions@sheffield.ac.uk
    +44 114 222 9500

    Any supervisors and research areas listed are indicative and may change before the start of the course.

    Our student protection plan

    Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.