Explore this course:

    Register your interest to hear about postgraduate study and events at the University of Sheffield

    2023 start September 

    Molecular and Cellular Basis of Human Disease

    School of Biosciences, Faculty of Science

    Begin your training in the mechanisms behind human disease, and learn how we can better understand and treat diseases, ready for an exciting career in academia, healthcare, industry or beyond.
    Postgraduate in Biomedical lab

    Course description

    This 12-month course has been designed for students who are fascinated by the fundamental processes that underpin how our bodies work at a cellular level. Whole genome sequencing and other scientific advancements have provided us with a wealth of information about the genetic changes found in disease but less is known about how these affect cellular mechanisms. Through your training, we’ll teach you the techniques that scientists use to understand how failures in key processes can lead to disease, and how we can use these discoveries to pave the way for new therapeutic treatments and biotechnologies.

    At Sheffield, we’re experts in the use of animal models for understanding disease mechanisms. Our scientists then use this knowledge to perform therapeutic studies into how we can treat disease. Our researchers are exploring solutions to cardiovascular disease, using zebrafish to understand how the developing heart undergoes complex morphological rearrangements. They’re even making breakthroughs in the search for Motor Neurone Disease treatments through careful study of the genetic and cellular malfunctions that lead to disease. It’s research like this that you’ll have the chance to get involved in throughout your degree.

    This course is built from a core programme of specially tailored modules, covering both the practical and theoretical side of the discipline. Lecture modules will provide you with a deep understanding of how epithelial tissues perform an essential role in our bodies, how we model human disease in the laboratory, and the causes, treatments and ongoing research into cancer. Immersive practical training modules will give you hands-on experience in laboratory techniques that underpin research in this field including cellular trafficking assays, model organism handling, CRISPR, PCR, and fluorescence microscopy..

    On top of this, you’ll receive training in scientific writing and presentation skills, critical analysis skills, and statistics and data analysis skills, as well as ethics and public awareness of science, allowing you to build the key transferable skills and knowledge you’ll need to support your career ambitions.

    When it comes to facilities, in the School of Biosciences we're home to the internationally renowned Bateson Centre, which is a world leading collection of academics, researchers and facilities collaborating to reduce the impact of human disease. These scientists also work closely with our cell biologists, physical scientists, computational biologists and clinicians to understand how our cells interact with the environment around them to develop improved disease therapies.

    The biggest part of the course is the independent research project. You'll spend three months researching the fundamental molecular and cellular mechanisms that contribute to disease, working with academics and researchers whose research is at the forefront of these fields. Our academics will train you to use the specialist equipment that you'll need to complete your project, and provide support to help you design your experiments, analyse your results and present your findings.

    Example past research projects include:

    • Macropinocytosis as a regulator of cancer cell growth
    • Role for SUMO-Specific Protease 1 in Regulating Mitochondrial biogenesis under Hypoxia linked to Aging, Age-related Degenerative and Ischaemic Diseases
    • Host senescence responses to the typhoid toxin of Salmonella Typhi

    Often, research carried out by our MSc students during their MSc research projects forms the basis of publications in peer-reviewed journals. Here are examples of past papers including student authors:

    • Walters, K., Sarsenov, R., Too, W.S. et al. Comprehensive functional profiling of long non-coding RNAs through a novel pan-cancer integration approach and modular analysis of their protein-coding gene association networks. BMC Genomics 20, 454 (2019).
    • Buckley CM, Heath VL, Guého A, Bosmani C, Knobloch P, et al. (2019) PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLOS Pathogens 15(2): e1007551.


    We accept medical students who wish to intercalate their studies. Find out more on the Medical School website.


    A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.

    Core modules:

    Ethics and Public Awareness of Science

    Those working within public health need to be familiar with secondary data sources that support research, management and practice. This module will consider the main types of secondary data - relating to demography, epidemiology, clinical effectiveness and cost-effectiveness. Strengths, uses, interpretation and limitations of secondary data sources will be examined, assessing these with regard to completeness, accuracy, relevance and timeliness. Students will explore these issues in connection with a case study for a specific country. Scenario planning, confidentiality and the use of computers are other key topics that are illustrated and explored within the module.The module will begin with an introduction to the areas in which legislation impinges on biomedical research. We will then proceed to analyse the processes by which such legislation is made including, especially, the ethical bases for such legislation. To do this we will introduce the students to the philosophical bases of ethical thought and get them to analyse existing laws to discover the ethics that underlies these laws. The students will then be asked to discuss the ethics of specific topics in the form of a formal debate. In addition, we examine how society perceives science and how the process of science itself works and how this influences scientists' abilities to present their work to the wider community. 

    15 credits
    Advanced Scientific Skills

    This module builds on existing, and further develops, generic scientific skills to equip postgraduate taught students with strong competences in presenting and reporting their research work using written and oral formats, in analysing data and the scientific literature, and in acquiring and extending their critical analysis skills. Teaching will be delivered using a blended approach with a combination of lectures, workshops, tutorials and seminars together with independent study and on-line teaching.

    Taught throughout the academic year, the module will be articulated around three units addressing: 

    Unit 1) Scientific presentation skills. In this unit, students will explore how to develop their academic (writing and oral) presentation skills. Some of the topics taught may include how to formulate a research question and hypothesis, how to find information, and how to structure a scientific essay or report. Students will learn how to communicate effectively their research to a scientific, as well as lay, audience. Emphasis will be placed on short oral communications and poster preparation and presentation.  The learning objectives will be acquired through lectures, workshops, tutorials and independent study.

    Unit 2) Critical analysis skills. This unit prepares students to develop their ability to analyse and appraise the scientific value of the published and unpublished literature. Workshops and lectures will introduce students to the process of critical appraisal of scientific work. 

    Unit 3) Statistics and data analysis skills. In this unit, students will learn methods to gather and analyse large datasets. In particular, workshops and lectures will teach students the basics of R coding and statistics for application in biosciences. The unit may also deliver other forms of data analysis relevant to the programme of study. Teaching within this unit will be delivered mainly through on-line material, lectures and workshops. Independent study will be essential to complete the acquisition of skills.

    15 credits
    Critical Analysis of Current Science

    This module is designed to develop the student's ability to read and understand the scientific literature relating to their own research area and also enable them to integrate their own work into the wider scientific field. The module consists of the following components; a seminar and seminar analysis programme designed to develop student skills in listening, understanding and appraising scientific research presented by external invited speakers; contribution, preparation and presentation of journal clubs reporting on the literature published in the field of biomedical science. In the latter component, students will be expected to demonstrate critical analysis skills, which will be encouraged through questions and discussions in classes. Each component is assessed through formal examination and oral presentation.

    15 credits
    Epithelial Physiology in Health and Disease

    This module examines the physiology and pathophysiology of epithelia, drawing on research to evidence how changes in the transport of ions and solutes leads to disease.  The majority of the module will focus on a detailed investigation of the molecular basis of epithelial ion secretion and absorption, examining diseases such as cystic fibrosis, and the impact of infections such as influenza and SARS-CoV-2.  Particular emphasis will be placed throughout these lectures on respiratory epithelial cells, although other epithelia will also be discussed. In addition, the controversial problem of water transport will be examined. This will include the importance of transepithelial transport routes and specific membrane transport proteins such as aquaporins and proposed water co-transporters and the role these proteins play in the movement of gases across cell membranes. The emphasis throughout will be to appreciate how experimental research informs our understanding of these issues, reflecting the university's mission statement to lead teaching by current research.

    15 credits
    Modelling Human Disease and Dysfunction

    The module will provide students with an understanding of how post-genomic biology impacts on our ability to understand, and treat, chronic diseases of the body. Students will be introduced to major experimental systems and approaches that are pertinent to disease modelling. These include genetically-tractable animal model and in vitro cellular systems (including stem cells). We will explore the principles involved in how these systems are exploited to develop new strategies for intervention, including new therapeutics. Critical evaluation of research papers will allow students to gain experience of analysing experimental work, data presentation and interpretation of results.

    15 credits
    Cancer Biology

    The unit will provide a description of the nature of genomic complexity as revealed using next generation sequencing technology. It will explore cancer genotypes and phenotypes in the context of 8 essential characteristics that are common to all cancers, and which collectively dictate malignant growth. These characteristics are : self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, tissue invasion/metastasis, avoidance of immune destruction, and de-regulated cellular energetics. It will discuss how genome instability arises, and together with tumour-promoting inflammation, how these enable the emergence of all other cancer characteristics. It will utilize this conceptual framework to discuss recent and future developments in cancer therapeutics. A brief review of fundamental principles in genetics and molecular cell biology will be given. Nevertheless, students should have a basic understanding of genetics, molecular biology and cell biology.

    15 credits
    Practical Cell Biology

    The practical unit will provide students with experience of practical cell biology. Students will be given the opportunity to establish and optimise ELISA-based assays for fundamental cellular processes, specifically the endocytic pathway. Particular emphasis will be placed on the development, execution and interpretation of experimental protocols as is standard practice in a research laboratory.

    15 credits
    Practical Developmental Genetics

    The practical unit aims to provide students with experience of research techniques in developmental biology. Students will perform experiments designed to reveal molecular and cellular principles underpinning developmental mechanisms. Emphasis will be placed on exploiting classical genetic and molecular resources available in model organisms such as zebrafish, Drosophila melanogaster, and chick for studying gene function in development. Students will gain experience of performing experimental work, data collection and interpretation of results.

    15 credits
    Literature Review and Research Proposal

    This unit involves an in-depth survey of the current literature relevant to the student's research project. Students will carry out an exhaustive search of the literature relevant to their project using the resources of the University, including appropriate databases and specialist search engines, as well as paper-based resources in the University Library. Based on primary research articles, review articles and textbooks, students will work independently under the supervision of the project supervisor to produce a document reporting on the background literature underpinning their research project. The literature review should demonstrate an ability to comprehend and synthesise the experimental evidence presented in the literature, to critically appraise previous studies and identify gaps in the knowledge, and to describe the experimental design of the research project.  To prepare their literature review,  students will meet at regular intervals with their supervisors to discuss their progress.

    15 credits
    Research Project

    The module aims to provide students with experience of conducting a research project, and develop analytical and organisational skills required for a career in science. Students undertake a research project which reflects the research activities in the Department/Faculty/University. Projects will be supervised by a member of the academic staff, although students may have additional contact with various staff contributing to their training. Students will gain experience of experimental design, and in execution, collation, interpretation and presentation of scientific data.
    Assessment of the project will be based on a written dissertation, an evaluation of the research skills developed during the tenure of the project, including keeping a lab book, and delivery of an individual poster presentation.

    60 credits

    The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.

    Open days

    An open day gives you the best opportunity to hear first-hand from our current students and staff about our courses. You'll find out what makes us special.

    Upcoming open days and campus tours


    1 year full-time


    Throughout your degree, you’ll be taught through lectures, practical sessions, lab placements, tutorials,  seminars and online teaching. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics.

    Dr Louise Robson, Senior Lecturer and Director of Undergraduate Studies, Department of Biomedical Science.

    I work on the disease cystic fibrosis (CF), which is one of the most common inherited diseases in caucasians, with an incidence of 1 in 2,500 live births. In CF a faulty gene means that the protein CFTR does not work properly. My research is looking at how CFTR is regulated normally, and what happens with faulty CFTR. In addition I am in the process of setting up a new diagnostic tool, with the aim of helping our CF clinic in the early diagnosis of children suffering from CF.

    Professor Louise Robson


    Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

    Your career

    As the research base broadens and industry begins to adopt new technologies, the demand for graduates in this area will continue to grow across the healthcare industry and academia.

    Graduates will be equipped with the specialist knowledge and transferable skills to pursue careers within:

    • The NHS as Clinical Scientists, healthcare scientists and laboratory assistants
    • Academic and research institutes as research associates and laboratory technicians 
    • Pharmaceutical and biomanufacturing companies as automation scientists and project managers

    If you choose to continue your research training, this course is also great preparation for a PhD.


    Firth Court quad

    The School of Biosciences brings together more than 100 years of teaching and research expertise across the breadth of biology.

    It's home to over 120 lecturers who are actively involved in research at the cutting edge of their field, sharing their knowledge with more than 1,500 undergraduate and 300 postgraduate students. 

    Our expertise spans the breadth and depth of bioscience, including molecular and cell biology, genetics, development, human physiology and pharmacology through to evolution, ecology, biodiversity conservation and sustainability. This makes us one of the broadest and largest groupings of the discipline and allows us to train the next generation of biologists in the latest research techniques and discoveries.

    Entry requirements

    Minimum 2:1 undergraduate honours degree in a biomedical-related subject.

    We also accept medical students who wish to intercalate their studies.

    We also consider a wide range of international qualifications:

    Entry requirements for international students

    Overall IELTS score of 6.5 with a minimum of 6.0 in each component, or equivalent.

    Pathway programme for international students

    If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for a pre-masters programme in Science and Engineering at the University of Sheffield International College. This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of Sheffield.

    If you have any questions about entry requirements, please contact the department.


    You can apply for postgraduate study using our Postgraduate Online Application Form. It's a quick and easy process.

    Apply now


    +44 114 222 2341

    Any supervisors and research areas listed are indicative and may change before the start of the course.

    Our student protection plan

    Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.

    Dr Louise Robson, Senior Lecturer and Director of Undergraduate Studies, Department of Biomedical Science.

    I work on the disease cystic fibrosis (CF), which is one of the most common inherited diseases in caucasians, with an incidence of 1 in 2,500 live births. In CF a faulty gene means that the protein CFTR does not work properly. My research is looking at how CFTR is regulated normally, and what happens with faulty CFTR. In addition I am in the process of setting up a new diagnostic tool, with the aim of helping our CF clinic in the early diagnosis of children suffering from CF.

    Professor Louise Robson

    BMST05 Off On