MBB bannerMBB banner

MSc Molecular Biology and Biotechnology

The biotechnological applications of molecular biology underpin major industries in the medical and agricultural sectors. Insights from the study of genetic material are already benefiting the development of new diagnostic tests, therapeutic agents, bioenergy production systems, improved crops and more. The range and value of these developments is rapidly increasing.

This new MSc Molecular Biology and Biotechnology program provides training for bioscience graduates to develop confidence and independence in their practical skills and knowledge relevant to careers in this area. Successful graduates will be ready to undertake further study at PhD level or to enter employment in the biotechnology sector.

Applying

To apply for this course, complete the University of Sheffield's postgraduate online application form.

Postgraduate online application form

You can find more information about the application process on the University's postgraduate webpages.

How to apply: applying essentials

Contact

Course Director: Dr Qaiser Sheikh

If you would like to know anything else about this course, contact Linda Harris.

T: +44 (0)114 222 2750
E: linda.harris@sheffield.ac.uk

You can also visit us throughout the year:
Postgraduate open days, visit afternoons and online chats

About the course

This course is aimed at training of international and home students (from allied biological fields) to develop confidence and independence to become reliable researchers and investigators. Theoretical aspects of biotechnology and molecular biology will be taught in the Department of Molecular Biology and Biotechnology and the Department of Chemical and Biological Engineering, and the practical training and individual research project will be based in state-of-the-art laboratories in Molecular Biology and Biotechnology.

Teaching
The MSc Molecular Biology and Biotechnology course lasts for one year and includes options of choosing taught modules. The course begins in September and includes nine months of laboratory experience and research, lectures and seminars, essay writing and a dissertation.

Read more about this course on the University of Sheffield's webpages for postgraduate students:
MSc Molecular Biology and Biotechnology

Entry requirements

For this course, we usually ask for a first class or second class BSc honours degree, or equivalent, in a molecular biology related subject (eg, biochemistry, genetics, biotechnology, microbiology). Applicants with professional experience may also be considered following interview.

We can also accept qualifications from other countries. You can find out which qualifications we accept from your country on the University's webpages for international students.

Prospective international students: Your country


English Language Requirements

If you have not already studied in a country where English is the majority language, it is likely that you will need to have an English language qualification. We usually ask for:

  • International English Language Testing Service (IELTS): Overall grade of 7 with 6 in each component

You can find out whether you need to have an english language qualification, and which other English language qualifications we accept, on the University's webpages for international students.

English language requirements

The English Language Teaching Centre offers English language courses for students who are preparing to study at the University of Sheffield.

English Language Teaching Centre

Fees and funding

Up-to-date fees and funding opportunities can be found on the University of Sheffield's webpages for postgraduate students. These may include scholarships for home and international students and a 10% discount for University of Sheffield graduates.

Postgraduate taught course fees and funding

Current modules

Core laboratory modules:

Laboratory Skills in Molecular Bioscience

Dr Qaiser Sheikh

This module is designed to develop and practice core molecular biology and biochemical techniques so that students may progress confidently to the research project. Protein and DNA isolation, SDS PAGE, Western analysis, ion exchange chromatography, protein overexpression, PCR, plasmid construction, sequencing and BLAST DNA sequence analysis will all be included as part of a 3 month, fully supervised laboratory project.

Advanced Research Project

Dr Qaiser Sheikh

This module lasts for six months and gives students an opportunity to conduct their own research project. Students will receive extensive training in molecular biology and biotechnology. Examples of possible research projects include:

  • Plant genetic engineering
  • Engineering of proteins of commercial importance for enhanced function
  • Gene function analysis by random mutagenesis

You will communicate your research findings to the scientific community by oral and poster presentations. Students will also complete dissertation and defend their work through viva voce examination.

Core lecture and tutorial modules:

Advanced Research Topics

Dr Phil Mitchell

This course will develop the ability of students to acquire information through the medium of research seminars. It will give insight into the development of scientific ideas, and acquaint students with the most recent developments in selected areas. Students will attend a series of seminars, given as part of the departmental research seminar programme, and will write a brief report on each. They will take part in a journal club, involving studying, presenting and discussing papers from the scientific literature. They will also undertake more extensive research into the scientific literature relevant to a subset of topics. Reporting of this work will include oral presentations in which students will practice modern presentation techniques.

Literature Review

Dr Qaiser Sheikh

This module involves an in-depth survey of the current literature relevant to the student's Laboratory Project. Students will build upon the skills in literature searching and interpretation they have developed in their undergraduate studies, making use of a variety of databases and literature-searching tools.

Cells as Factories

Dr Jim Gilmour

The module will explore the concept of living organisms and enzymes as `factories' with a wide potential for product synthesis and biocatalysis. Areas of biotechnology and the market/product sectors will be discussed using three case studies in algal biofuels, therapeutic proteins and study of engineered enzymes of commercial importance. The principles which underpin biological industrial processes will be examined and developed through these case studies and will include such key elements as organism selection and improvement, process format, optimisation of physiology, biochemistry and environment to achieve maximum productivity, as well as consequences of scale up from laboratory to industrial level.

Choice of three lecture modules:

Advanced Bioprocess Design Project

Dr Robert Falconer (Department of Chemical and Biological Engineering)

This module will cover the design of whole biomanufacturing processes for the manufacture of biotherapeutic proteins. This will include a taught component where process design principles and practice will be learnt plus assistance during the design process where the student will produce a process design and accompanying report.

Advanced Biochemical Engineering

Professor Will Zimmerman (Department of Chemical and Biological Engineering)

This module will extend the use of classical chemical engineering principles of mass balance, energy balance and mass transfer to unit operations used in the manufacture of biopharmaceuticals. This will include fermentation, cell culture reactors, homogenisation, centrifuging, filtration and chromatography. Unit operation specific models will also be applied to predict these operations effectiveness.

Microbiology of Extreme Environments

Dr Jim Gilmour

This module will discusses about extreme environments, its types and biodiversity as well as importance of extremophiles. The mechanisms used by microorganisms to grow in extreme environments on Earth alongside the industrial applications of extremophiles will be evaluated. During this module a dialogue of results relating to astrobiology (potential survival of microorganisms in space) using planetary probes and landers will also be appraised. Finally, these lectures will explore how proteins from thermophiles, psychrophiles and halophiles have adapted to their extreme environments (at a molecular level), using a number of different examples.

Plant Biotechnology

Dr Stuart Casson

This course covers the production of transgenic plants and how this technology has resulted in genetically engineered crop plants that have improved qualities or produce novel products including vaccines! It introduces modern alternative techniques such as marker assisted plant breeding and genome editing technology that can be used to produce genetically improved non GM crop varieties, as well as detailing some of the grand challenges for the next generation of crop improvement. The release of engineered crops is having a major impact on society raising issues of economic, ethical, moral and ecological importance. An appreciation of these issues will be developed.

The RNA World

Professor Stuart Wilson

This module aims to provide students with an understanding of how RNA is made and used with an emphasis on eukaryotic cells. We will show how mRNAs are made through multiple different processing steps and how the cell couples all these together to ensure efficiency of synthesis and quality control of the product. How mRNAs are moved around in the cell will also be discussed and how this can go wrong in human diseases. We will also introduce other important forms of RNA in the cell such as miRNAs and piRNAs and the biological roles they play in processes such as RNA interference. Embedded within this course will be a series of lectures covering principle techniques used universally for eukaryotic molecular biology research such as CRISPR genome editing and RNA interference. The course will therefore be of interest to anyone considering a future career in molecular biology research.

The modules listed above are examples from the current academic year. There may be some changes before you start your course.

The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research, funding changes, professional accreditation requirements, student or employer feedback, outcomes of reviews, and variations in staff or student numbers.